



## Simple Linear Regression-II

#### CIVL 7012/8012



### THE UNIVERSITY OF

# Recap(1)

- On simple linear regression, we learned
  - estimation methods
  - Gauss-Markov theorem
  - Goodness of fit
  - Interpretation
  - Incorporating non-linearities (log and exponential forms)



### THE UNIVERSITY OF

## Significance of parameters

- The *t-test*
- *t* statistic for  $\hat{\beta}_j$ :

$$\hat{\beta}_{j} \equiv \frac{\hat{\beta}_{j}}{se(\hat{\beta}_{j})}$$

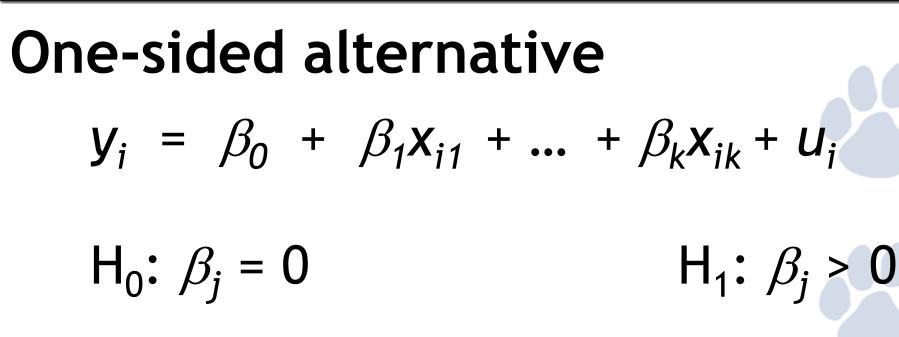
• Null hypothesis

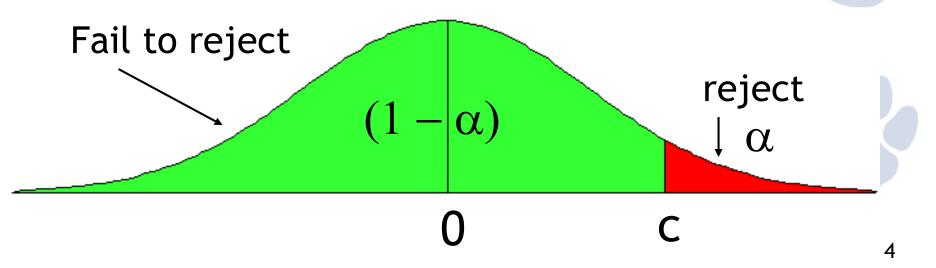
H<sub>0</sub>: β<sub>j</sub>=0

- Alternate hypothesis
  - $H_1$ :  $\beta_i > 0$  and  $H_1$ :  $\beta_i < 0$  are one-sided
  - $H_1: \beta_j \neq 0$  is a two-sided

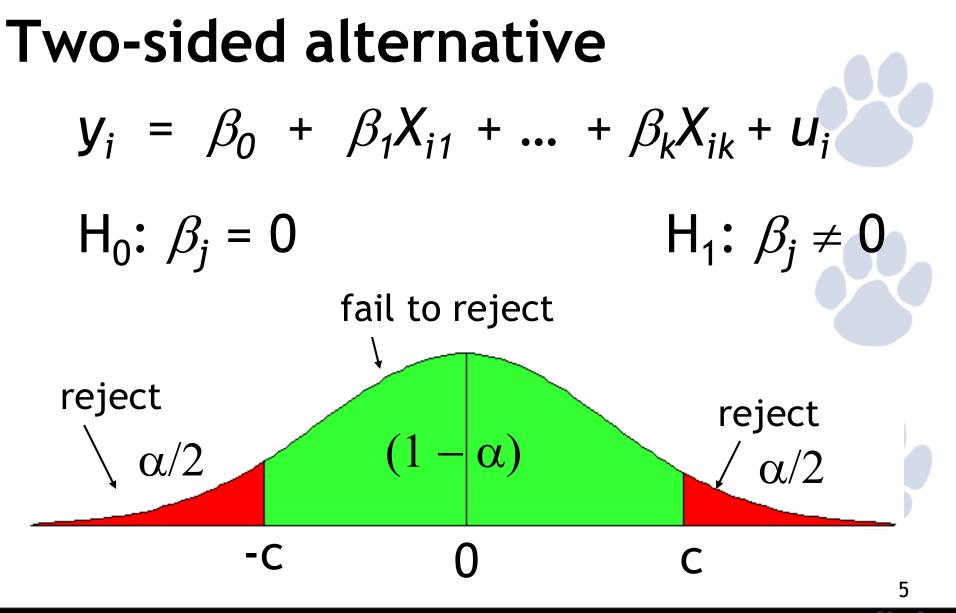












THE UNIVERSITY OF

EMPHIS.

www.memphis.edu



#### THE UNIVERSITY OF **MEMPHIS**

# Confidence interval of parameter estimate

- Confidence interval using the same critical value as was used for a two-sided test
- A (1  $\alpha$ ) % confidence interval is defined as

$$\hat{\beta}_j \pm c \bullet se(\hat{\beta}_j)$$
, where  $c$  is the  $\left(1 - \frac{\alpha}{2}\right)$  percentile  
in a  $t_{n-k-1}$  distribution

## Computing p-value for t-tests

- Question:
  - "what is the smallest significance level at which the null would be rejected?"
- Compute the t statistic, and then look up what percentile it is in the appropriate t distribution - this is the p-value
- Example
  - If p-value is less than 0.05 then the parameter is significant at 95% level of confidence



THE UNIVERSITY OF

Dreamers. Thinkers. Doers.

# Confidence interval of mean response

A 100(1 –  $\alpha$ )% confidence interval on the mean response at the value of  $x = x_0$ , say  $\mu_{Y|x_0}$ , is given by

$$\hat{\mu}_{Y|x_{0}} - t\alpha/2, n-2\sqrt{\hat{\sigma}^{2} \left[\frac{1}{n} + \frac{(x_{0} - \overline{x})^{2}}{S_{xx}}\right]}$$

$$\leq \mu_{Y|x_{0}} \leq \hat{\mu}_{Y|x_{0}} + t_{\alpha/2, n-2}\sqrt{\hat{\sigma}^{2} \left[\frac{1}{n} + \frac{(x_{0} - \overline{x})^{2}}{S_{xx}}\right]}$$
(11-31)

where  $\hat{\mu}_{\gamma|x_0} = \hat{\beta}_0 + \hat{\beta}_1 x_0$  is computed from the fitted regression model.



# Prediction interval of new response

THE UNIVERSITY OF **MEMPHIS**.

A 100(1 –  $\alpha$ )% prediction interval on a future observation Y<sub>0</sub> at the value x<sub>0</sub> is given by

$$\hat{y}_{0} - t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^{2} \left[ 1 + \frac{1}{n} + \frac{\left(x_{0} - \overline{x}\right)^{2}}{S_{xx}} \right]}$$

$$\leq Y_{0} \leq \hat{y}_{0} + t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^{2} \left[ 1 + \frac{1}{n} + \frac{\left(x_{0} - \overline{x}\right)^{2}}{S_{xx}} \right]}$$
(11-33)

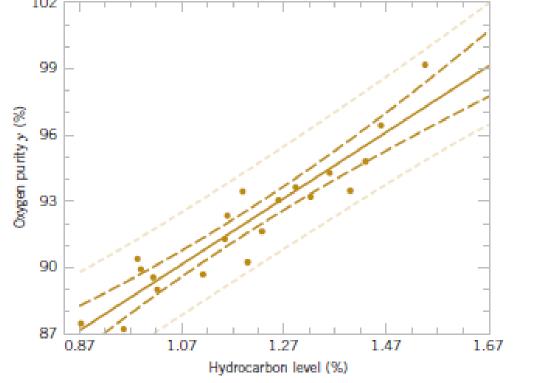
The value  $\hat{y}_0$  is computed from the regression model  $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$ .



### THE UNIVERSITY OF **MEMPHIS**

# Prediction and confidence interval

 Prediction interval is larger than confidence interval





## **Regression Passing through Origin**

- Regression equation becomes:  $\tilde{y} = \tilde{\beta}_1 x$ ,
- Using OLS:

THE UNIVERSIT

MEMPHIS

$$\sum_{i=1}^{n} (y_i - \tilde{\beta}_1 x_i)^2.$$

• First order conditions:

• Parameter estimate:

$$\sum_{i=1}^{n} x_{i}(y_{i} - \tilde{\beta}_{1}x_{i}) = 0.$$
$$\tilde{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i}y_{i}}{\sum_{i=1}^{n} x_{i}^{2}},$$



 $\sum_{i=1}^{n} (y_i - \tilde{\beta}_1 x_i)^2$ 

 $\sum (y_i - \overline{y})^2$ 

### **Regression Passing through Origin**

• R-square becomes

FMPHIS

- This term can be negative
- Means, using simple averages to predict y is better than using regression equation passing through origin



## **Regression of a constant**

- No need to have x (no variability)
- Intercept itself is mean of y
- No parameter estimates needed